If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6k^2-9=0
a = 6; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·6·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*6}=\frac{0-6\sqrt{6}}{12} =-\frac{6\sqrt{6}}{12} =-\frac{\sqrt{6}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*6}=\frac{0+6\sqrt{6}}{12} =\frac{6\sqrt{6}}{12} =\frac{\sqrt{6}}{2} $
| (4x+6)(2x+8)=600 | | 61=2x-55 | | H=5+31t-16t2 | | 1.5=0.0001x^2-0.0283x+2.229 | | 7.5*x=3 | | 4y+5+3y-2-y= | | -10=4x+2(x-2) | | x=47-6 | | 4p-39=3p-11 | | 1,14-y/3125=-0,19875+(0,50/8000)y | | 5/9x=8+1/9x | | 3(y+2)+6y=15 | | 48x^2-26x-35=0 | | 1,34=y/3125+(0.5/8000)y | | 3s^2+9s-1=0 | | 36=3x-18 | | 2x+4=-(7+) | | 3(x-2)=-x+8 | | Y=900x+300 | | 35+0.10m=20+0.15m | | 63+7x=42 | | -6(6+5x)-4=-220 | | 9x-7=62 | | 2d^2+9d+6=0 | | (x+1)3=4(x+2) | | 1/3t=t+-154 | | 7+-5=9n+32 | | -15x+120=85(x+76) | | -1/2(8x/20)-9x=81 | | 6y-2=8y+22 | | 5h^2+7h-8=0 | | 25+3w+4w+2+2w=9(w+3) |